Not logged in : Login
(Sponging disallowed)

About: Meta-Learning for Recommending Metaheuristics for the MaxSAT Problem     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : bibo:AcademicArticle, within Data Space : demo.openlinksw.com associated with source document(s)

AttributesValues
type
seeAlso
sameAs
http://eprints.org/ontology/hasAccepted
http://eprints.org/ontology/hasDocument
http://eprints.org/ontology/hasPublished
dc:hasVersion
Title
  • Meta-Learning for Recommending Metaheuristics for the MaxSAT Problem
described by
Date
  • 2018-12-17
Creator
status
Publisher
abstract
  • It is of great interest to build recommendation systems capable of choosing the best solver for a particular problem of a combinatorial optimisation task given past runs of solvers in various problems of that optimisation task. In this paper, a meta-learning approach is proposed to predict which metaheuristic is the best solver for MaxSAT problems. The proposal includes the creation of new meta-features derived from graph descriptions of MaxSAT problems and an interpretation of the meta-model. Our approach successfully selected the best metaheuristic to solve each problem in 87% of the cases. Also, the new meta-features have shown to be as good as the state-of-the-art meta-features, and the meta-model interpretation found interesting problem-specific knowledge.
Is Part Of
list of authors
presented at
is topic of
is primary topic of
Faceted Search & Find service v1.17_git144 as of Jul 26 2024


Alternative Linked Data Documents: iSPARQL | ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Aug 25 2024, on Linux (x86_64-ubuntu_noble-linux-glibc2.38-64), Single-Server Edition (378 GB total memory, 31 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software