This HTML5 document contains 22 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
n2https://kar.kent.ac.uk/id/eprint/
wdrshttp://www.w3.org/2007/05/powder-s#
n5http://purl.org/ontology/bibo/status/
rdfshttp://www.w3.org/2000/01/rdf-schema#
n12https://kar.kent.ac.uk/id/subject/
n18https://demo.openlinksw.com/about/id/entity/https/raw.githubusercontent.com/annajordanous/CO644Files/main/
n3http://eprints.org/ontology/
bibohttp://purl.org/ontology/bibo/
n11https://kar.kent.ac.uk/id/publication/
n7https://kar.kent.ac.uk/id/org/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n9doi:10.1016/
owlhttp://www.w3.org/2002/07/owl#
n17https://kar.kent.ac.uk/90202/
n19https://kar.kent.ac.uk/id/
xsdhhttp://www.w3.org/2001/XMLSchema#
n14https://demo.openlinksw.com/about/id/entity/https/www.cs.kent.ac.uk/people/staff/akj22/materials/CO644/
n10https://kar.kent.ac.uk/id/person/
n15https://kar.kent.ac.uk/id/eprint/90202#

Statements

Subject Item
n2:90202
rdf:type
n3:EPrint bibo:Article n3:ArticleEPrint bibo:AcademicArticle
rdfs:seeAlso
n17:
owl:sameAs
n9:j.ins.2018.05.030
dcterms:title
A method for autonomous data partitioning
wdrs:describedby
n14:export_kar_RDFN3.n3 n18:export_kar_RDFN3.n3
dcterms:date
2018-09-01
dcterms:creator
n10:ext-11ab9d61306db2fc84b554e5d5089af5 n10:ext-2ec95e5afa7a3687b87151cb8654e0cd n10:ext-x.gu@kent.ac.uk
bibo:status
n5:peerReviewed n5:published
dcterms:publisher
n7:ext-f308aad1ef8f70546c3a197f104f2ad5
bibo:abstract
In this paper, we propose a fully autonomous, local-modes-based data partitioning algorithm, which is able to automatically recognize local maxima of the data density from empirical observations and use them as focal points to form shape-free data clouds, i.e. a form of Voronoi tessellation. The method is free from user- and problem- specific parameters and prior assumptions. The proposed algorithm has two versions: i) offline for static data and ii) evolving for streaming data. Numerical results based on benchmark datasets prove the validity of the proposed algorithm and demonstrate its excellent performance and high computational efficiency compared with the state-of-art clustering algorithms.
dcterms:isPartOf
n11:ext-00200255 n19:repository
dcterms:subject
n12:QA75
bibo:authorList
n15:authors
bibo:volume
460-46