This HTML5 document contains 29 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
n2https://kar.kent.ac.uk/id/eprint/
n10https://kar.kent.ac.uk/id/eprint/66997#
n9https://kar.kent.ac.uk/66997/
wdrshttp://www.w3.org/2007/05/powder-s#
dchttp://purl.org/dc/elements/1.1/
n16http://purl.org/ontology/bibo/status/
n15https://kar.kent.ac.uk/id/subject/
rdfshttp://www.w3.org/2000/01/rdf-schema#
n7https://demo.openlinksw.com/about/id/entity/https/raw.githubusercontent.com/annajordanous/CO644Files/main/
n5http://eprints.org/ontology/
bibohttp://purl.org/ontology/bibo/
n14https://kar.kent.ac.uk/id/publication/
n13https://kar.kent.ac.uk/id/org/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
n18doi:10.1016/
owlhttp://www.w3.org/2002/07/owl#
n12https://kar.kent.ac.uk/id/document/
n21https://kar.kent.ac.uk/id/
xsdhhttp://www.w3.org/2001/XMLSchema#
n20https://demo.openlinksw.com/about/id/entity/https/www.cs.kent.ac.uk/people/staff/akj22/materials/CO644/
n11https://kar.kent.ac.uk/id/person/

Statements

Subject Item
n2:66997
rdf:type
n5:EPrint n5:ArticleEPrint bibo:AcademicArticle bibo:Article
rdfs:seeAlso
n9:
owl:sameAs
n18:j.cam.2017.11.038
n5:hasAccepted
n12:1203308
n5:hasDocument
n12:1203308 n12:1203314 n12:1341953 n12:1341954 n12:1341955 n12:1341956
dc:hasVersion
n12:1203308
dcterms:title
An analytical approach: Explicit inverses of periodic tridiagonal matrices
wdrs:describedby
n7:export_kar_RDFN3.n3 n20:export_kar_RDFN3.n3
dcterms:date
2018-06-01
dcterms:creator
n11:ext-t.r.hopkins@kent.ac.uk n11:ext-c05a02c9b7eac4a4e0193e700af41898
bibo:status
n16:peerReviewed n16:published
dcterms:publisher
n13:ext-f308aad1ef8f70546c3a197f104f2ad5
bibo:abstract
We derive an explicit formula for the inverse of a general, periodic, tridiagonal matrix. Our approach is to derive its factorization using backward continued fractions (BCF) which are an essential tool in number theory. We then use these formulae to construct an algorithm for inverting a general, periodic, tridiagonal matrix which we implement in Maple.1 Finally, we present the results of testing the efficiency of our new algorithm against another published implementation and against the library procedures available within Maple to invert a general matrix and to compute its determinant.
dcterms:isPartOf
n14:ext-03770427 n21:repository
dcterms:subject
n15:QA
bibo:authorList
n10:authors
bibo:volume
335