Not logged in : Login
(Sponging disallowed)

About: Data stream classification with ant colony optimisation     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : bibo:AcademicArticle, within Data Space : demo.openlinksw.com associated with source document(s)

AttributesValues
type
seeAlso
sameAs
http://eprints.org/ontology/hasAccepted
http://eprints.org/ontology/hasDocument
dc:hasVersion
Title
  • Data stream classification with ant colony optimisation
described by
Date
  • 2022-01-10
Creator
status
Publisher
abstract
  • Data stream mining has recently emerged in response to the rapidly increasing continuous data generation. While the majority of Ant Colony Optimisation (ACO) rule induction algorithms have proved to be successful in producing both accurate and comprehensive classification models in nonstreaming (batch) settings, currently ACO-based algorithms for classification problems are not suited to be applied to data stream mining. One of the main challenges is the iterative nature of ACO algorithms, where many procedures—for example, heuristic calculation, selection of continuous attributes, pruning—require multiple passes through the data to create a model. In this paper, we present a new ACO-based algorithm for data stream classification. The proposed algorithm, called Stream Ant-Miner (sAnt-Miner), uses a novel hybrid pheromone model combining both a traditional construction graph and solution archives models to efficiently handle a large number of mixed-type (nominal and continuous) attributes directly without the need for additional procedures, reducing the computational time required to complete an iteration of the algorithm. Our results show that sAnt-Miner produces statistically significant concise models compared with state-of-the-art rule induction data stream algorithms, without negative effects on their predictive accuracy.
Is Part Of
Subject
list of authors
is topic of
is primary topic of
Faceted Search & Find service v1.17_git144 as of Jul 26 2024


Alternative Linked Data Documents: iSPARQL | ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Aug 25 2024, on Linux (x86_64-ubuntu_noble-linux-glibc2.38-64), Single-Server Edition (378 GB total memory, 28 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software