Not logged in : Login
(Sponging disallowed)

About: A Massively Parallel Deep Rule-Based Ensemble Classifier for Remote Sensing Scenes     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : bibo:AcademicArticle, within Data Space : demo.openlinksw.com associated with source document(s)

AttributesValues
type
seeAlso
sameAs
Title
  • A Massively Parallel Deep Rule-Based Ensemble Classifier for Remote Sensing Scenes
described by
Date
  • 2018-03-01
Creator
status
Publisher
abstract
  • In this letter, we propose a new approach for remote sensing scene classification by creating an ensemble of the recently introduced massively parallel deep (fuzzy) rule-based (DRB) classifiers trained with different levels of spatial information separately. Each DRB classifier consists of a massively parallel set of human-interpretable, transparent zero-order fuzzy IF...THEN... rules with a prototype-based nature. The DRB classifier can self-organize “from scratch” and self-evolve its structure. By employing the pretrained deep convolution neural network as the feature descriptor, the proposed DRB ensemble is able to exhibit human-level performance through a transparent and parallelizable training process. Numerical examples using benchmark data set demonstrate the superior accuracy of the proposed approach together with human-interpretable fuzzy rules autonomously generated by the DRB classifier.
Is Part Of
Subject
list of authors
issue
  • 3
volume
  • 15
is topic of
is primary topic of
Faceted Search & Find service v1.17_git144 as of Jul 26 2024


Alternative Linked Data Documents: iSPARQL | ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Aug 25 2024, on Linux (x86_64-ubuntu_noble-linux-glibc2.38-64), Single-Server Edition (378 GB total memory, 49 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software