Not logged in : Login
(Sponging disallowed)

About: Adapting random forests to cope with heavily censored datasets in survival analysis     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : bibo:AcademicArticle, within Data Space : demo.openlinksw.com associated with source document(s)

AttributesValues
type
seeAlso
http://eprints.org/ontology/hasAccepted
http://eprints.org/ontology/hasDocument
dc:hasVersion
Title
  • Adapting random forests to cope with heavily censored datasets in survival analysis
described by
Date
  • 2020-10
Creator
status
Publisher
abstract
  • We address a survival analysis task where the goal is to predict the time passed until a subject is diagnosed with an age-related disease. The main challenge is that subjects’ data are very often censored, i.e., their time to diagnosis is only partly known. We propose a new Random Forest variant to cope with censored data, and evaluate it in experiments predicting the time to diagnosis of 8 age-related diseases, for data from the English Longitudinal Study of Ageing (ELSA) database. In these experiments, the proposed Random Forest variant, in general, outperformed a well-known Random Forest variant for censored data.
Is Part Of
Subject
list of authors
presented at
is topic of
is primary topic of
Faceted Search & Find service v1.17_git149 as of Dec 03 2024


Alternative Linked Data Documents: iSPARQL | ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Jan 29 2025, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (378 GB total memory, 20 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software