Not logged in : Login
(Sponging disallowed)

About: DNN Filter Bank Improves 1-Max Pooling CNN for Single-Channel EEG Automatic Sleep Stage Classification     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : bibo:AcademicArticle, within Data Space : demo.openlinksw.com associated with source document(s)

AttributesValues
type
seeAlso
sameAs
http://eprints.org/ontology/hasAccepted
http://eprints.org/ontology/hasDocument
dc:hasVersion
Title
  • DNN Filter Bank Improves 1-Max Pooling CNN for Single-Channel EEG Automatic Sleep Stage Classification
described by
Date
  • 2018-10-29
Creator
status
Publisher
abstract
  • We present in this paper an efficient convolutional neural network (CNN) running on time-frequency image features for automatic sleep stage classification. Opposing to deep architectures which have been used for the task, the proposed CNN is much simpler. However, the CNN’s convolutional layer is able to support convolutional kernels with different sizes, and therefore, capable of learning features at multiple temporal resolutions. In addition, the 1-max pooling strategy is employed at the pooling layer to better capture the shift-invariance property of EEG signals. We further propose a method to discriminatively learn a frequency-domain filter bank with a deep neural network (DNN) to preprocess the time-frequency image features. Our experiments show that the proposed 1-max pooling CNN performs comparably with the very deep CNNs in the literature on the Sleep-EDF dataset. Preprocessing the time-frequency image features with the learned filter bank before presenting them to the CNN leads to significant improvements on the classification accuracy, setting the state-of-the-art performance on the dataset.
Is Part Of
list of authors
presented at
is topic of
is primary topic of
Faceted Search & Find service v1.17_git144 as of Jul 26 2024


Alternative Linked Data Documents: iSPARQL | ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Aug 25 2024, on Linux (x86_64-ubuntu_noble-linux-glibc2.38-64), Single-Server Edition (378 GB total memory, 49 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software