Not logged in : Login
(Sponging disallowed)

About: Forked Recurrent Neural Network for Hand Gesture Classification Using Inertial Measurement Data     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : bibo:AcademicArticle, within Data Space : demo.openlinksw.com associated with source document(s)

AttributesValues
type
seeAlso
sameAs
http://eprints.org/ontology/hasAccepted
http://eprints.org/ontology/hasDocument
dc:hasVersion
Title
  • Forked Recurrent Neural Network for Hand Gesture Classification Using Inertial Measurement Data
described by
Date
  • 2019-04-17
Creator
status
Publisher
abstract
  • For many applications of hand gesture recognition, a delayfree, affordable, and mobile system relying on body signals is mandatory. Therefore, we propose an approach for hand gestures classification given signals of inertial measurement units (IMUs) that works with extremely short windows to avoid delays. With a simple recurrent neural network the suitability of the sensor modalities of an IMU (accelerometer, gyroscope, magnetometer) are evaluated by only providing data of one modality. For the multi-modal data a second network with mid-level fusion is proposed. Its forked architecture allows us to process data of each modality individually before carrying out a joint analysis for classification. Experiments on three databases reveal that even when relying on a single modality our proposed system outperforms state-of-the-art systems significantly. With the forked network classification accuracy can be further improved by over 10% absolute compared to the best reported system while causing a fraction of the delay.
Is Part Of
list of authors
presented at
is topic of
is primary topic of
Faceted Search & Find service v1.17_git144 as of Jul 26 2024


Alternative Linked Data Documents: iSPARQL | ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Aug 25 2024, on Linux (x86_64-ubuntu_noble-linux-glibc2.38-64), Single-Server Edition (378 GB total memory, 21 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software