Not logged in : Login
(Sponging disallowed)

About: Unifying Isolated and Overlapping Audio Event Detection with Multi-Label Multi-Task Convolutional Recurrent Neural Networks     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : bibo:AcademicArticle, within Data Space : demo.openlinksw.com associated with source document(s)

AttributesValues
type
seeAlso
sameAs
http://eprints.org/ontology/hasAccepted
http://eprints.org/ontology/hasDocument
dc:hasVersion
Title
  • Unifying Isolated and Overlapping Audio Event Detection with Multi-Label Multi-Task Convolutional Recurrent Neural Networks
described by
Date
  • 2019-04-17
Creator
status
Publisher
abstract
  • We propose a multi-label multi-task framework based on a convolutional recurrent neural network to unify detection of isolated and overlapping audio events. The framework leverages the power of convolutional recurrent neural network architectures; convolutional layers learn effective features over which higher recurrent layers perform sequential modelling. Furthermore, the output layer is designed to handle arbitrary degrees of event overlap. At each time step in the recurrent output sequence, an output triple is dedicated to each event category of interest to jointly model event occurrence and temporal boundaries. That is, the network jointly determines whether an event of this category occurs, and when it occurs, by estimating onset and offset positions at each recurrent time step. We then introduce three sequential losses for network training: multi-label classification loss, distance estimation loss, and confidence loss. We demonstrate good generalization on two datasets: ITC-Irst for isolated audio event detection, and TUT-SED-Synthetic-2016 for overlapping audio event detection.
Is Part Of
list of authors
presented at
is topic of
is primary topic of
Faceted Search & Find service v1.17_git144 as of Jul 26 2024


Alternative Linked Data Documents: iSPARQL | ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Aug 25 2024, on Linux (x86_64-ubuntu_noble-linux-glibc2.38-64), Single-Server Edition (378 GB total memory, 39 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software