Not logged in : Login
(Sponging disallowed)

About: Predicting Students’ Final Degree Classification Using an Extended Profile     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : bibo:AcademicArticle, within Data Space : demo.openlinksw.com associated with source document(s)

AttributesValues
type
seeAlso
sameAs
http://eprints.org/ontology/hasAccepted
http://eprints.org/ontology/hasDocument
http://eprints.org/ontology/hasPublished
dc:hasVersion
Title
  • Predicting Students’ Final Degree Classification Using an Extended Profile
described by
Date
  • 2019-02-02
Creator
status
Publisher
abstract
  • The students’ progression and attainment gap are considered as key performance indicators of many universities worldwide. Therefore, universities invest significantly in resources to reduce the attainment gap between good and poor performing students. In this regard, various mathematical models have been utilised to predict students’ performances in the hope of informing the support team to intervene at an early stage of the at risk student’s at the university. In this work, we used a combination of institutional, academic, demographic, psychological and economic factors to predict students’ performances using a multi-layered neural network (NN) to classify students’ degrees into either a good or basic degree class. To our knowledge, the usage of such an extended profile is novel. A feed-forward network with 100 nodes in the hidden layer trained using Levenberg-Marquardt learning algorithm was able to achieve the best performance with an average classification accuracy of 83.7%, sensitivity of 77.37%, specificity of 85.16%, Positive Predictive Value of 94.04%, and Negative Predictive Value of 50.93%. The NN model was also compared against other classi?ers specifically k-Nearest Neighbour, Decision Tree and Support Vector Machine on the same dataset using the same features. The results indicate that the NN outperforms all other classi?ers in terms of overall classification accuracy and shows promise for the method to be used in Student Success ventures in the universities in an automatic manner.
Is Part Of
list of authors
volume
  • 24
is topic of
is primary topic of
Faceted Search & Find service v1.17_git144 as of Jul 26 2024


Alternative Linked Data Documents: iSPARQL | ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Aug 25 2024, on Linux (x86_64-ubuntu_noble-linux-glibc2.38-64), Single-Server Edition (378 GB total memory, 45 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software