Not logged in : Login
(Sponging disallowed)

About: An Attention Pooling based Representation Learning Method for Speech Emotion Recognition     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : bibo:AcademicArticle, within Data Space : demo.openlinksw.com associated with source document(s)

AttributesValues
type
seeAlso
sameAs
http://eprints.org/ontology/hasAccepted
http://eprints.org/ontology/hasDocument
dc:hasVersion
Title
  • An Attention Pooling based Representation Learning Method for Speech Emotion Recognition
described by
Date
  • 2018-09-06
Creator
status
Publisher
abstract
  • This paper proposes an attention pooling based representation learning method for speech emotion recognition (SER). The emotional representation is learned in an end-to-end fashion by applying a deep convolutional neural network (CNN) directly to spectrograms extracted from speech utterances. Motivated by the success of GoogleNet, two groups of filters with different shapes are designed to capture both temporal and frequency domain context information from the input spectrogram. The learned features are concatenated and fed into the subsequent convolutional layers. To learn the final emotional representation, a novel attention pooling method is further proposed. Compared with the existing pooling methods, such as max-pooling and average-pooling, the proposed attention pooling can effectively incorporate class-agnostic bottom-up, and class-specific top-down, attention maps. We conduct extensive evaluations on benchmark IEMOCAP data to assess the effectiveness of the proposed representation. Results demonstrate a recognition performance of 71.8% weighted accuracy (WA) and 68% unweighted accuracy (UA) over four emotions, which outperforms the state-of-the-art method by about 3% absolute for WA and 4% for UA.
Is Part Of
Subject
list of authors
presented at
is topic of
is primary topic of
Faceted Search & Find service v1.17_git149 as of Dec 03 2024


Alternative Linked Data Documents: iSPARQL | ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Jan 29 2025, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (378 GB total memory, 21 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software