Not logged in : Login
(Sponging disallowed)

About: Early detection of continuous and partial audio events using CNN     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : bibo:AcademicArticle, within Data Space : demo.openlinksw.com associated with source document(s)

AttributesValues
type
seeAlso
sameAs
http://eprints.org/ontology/hasAccepted
http://eprints.org/ontology/hasDocument
dc:hasVersion
Title
  • Early detection of continuous and partial audio events using CNN
described by
Date
  • 2018-09-06
Creator
status
Publisher
abstract
  • Sound event detection is an extension of the static auditory classification task into continuous environments, where performance depends jointly upon the detection of overlapping events and their correct classification. Several approaches have been published to date which either develop novel classifiers or employ well-trained static classifiers with a detection front-end. This paper takes the latter approach, by combining a proven CNN classifier acting on spectrogram image features, with time-frequency shaped energy detection that identifies seed regions within the spectrogram that are characteristic of auditory energy events. Furthermore, the shape detector is optimised to allow early detection of events as they are developing. Since some sound events naturally have longer durations than others, waiting until completion of entire events before classification may not be practical in a deployed system. The early detection capability of the system is thus evaluated for the classification of partial events. Performance for continuous event detection is shown to be good, with accuracy being maintained well when detecting partial events.
Is Part Of
Subject
list of authors
presented at
volume
  • 2018-S
is topic of
is primary topic of
Faceted Search & Find service v1.17_git144 as of Jul 26 2024


Alternative Linked Data Documents: iSPARQL | ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Aug 25 2024, on Linux (x86_64-ubuntu_noble-linux-glibc2.38-64), Single-Server Edition (378 GB total memory, 30 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software