Not logged in : Login
(Sponging disallowed)

About: Machine learning methods applied to audit of surgical margins after curative surgery for head and neck cancer     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : bibo:AcademicArticle, within Data Space : demo.openlinksw.com associated with source document(s)

AttributesValues
type
seeAlso
sameAs
Title
  • Machine learning methods applied to audit of surgical margins after curative surgery for head and neck cancer
described by
Date
  • 2021-02-01
Creator
status
Publisher
abstract
  • Most surgical specialties have attempted to address concerns about the unfair comparison of outcomes by ‘risk-adjusting’ data to benchmark specialty-specific outcomes that are indicative of quality of care. We explore the ability to predict for positive margin status so that effective benchmarking that will account for complexity of case mix is possible. A dataset of care episodes recorded as a clinical audit of margin status after surgery for head and neck squamous cell carcinoma (n=1316) was analysed within the Waikato Environment for Knowledge Analyisis (WEKA) machine learning programme. The outcome was a classification model that can predict for positivity of tumour margins (defined as less than 1mm) using data on preoperative demographics, operations, functional status, and tumour stage. Positive resection margins of less than 1mm were common, and varied considerably between treatment units (19%-29%). Four algorithms were compared to attempt to risk-adjust for case complexity. The 'champion' model was a Naïve Bayes classifier (AUROC 0.72) that suggested acceptable discrimination. Calibration was good (Hosmer-Lemershow goodness-of-fit test p=0.9). Adjusted positive margin rates are presented on a funnel plot. Subspecialty groups within oral and maxillofacial surgery are seeking metrics that will allow for meaningful comparison of the quality of care delivered by surgical units in the UK. To enable metrics to be effective, we argue that they can be modelled so that meaningful benchmarking, which takes account of variation in complexity of patient need or care, is possible.
Is Part Of
Subject
list of authors
issue
  • 2
volume
  • 59
is topic of
is primary topic of
Faceted Search & Find service v1.17_git144 as of Jul 26 2024


Alternative Linked Data Documents: iSPARQL | ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Aug 25 2024, on Linux (x86_64-ubuntu_noble-linux-glibc2.38-64), Single-Server Edition (378 GB total memory, 48 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software