Not logged in : Login
(Sponging disallowed)

About: Analysing the overfit of the auto-sklearn automated machine learning tool.     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : bibo:BookSection, within Data Space : demo.openlinksw.com associated with source document(s)

AttributesValues
type
seeAlso
sameAs
Title
  • Analysing the overfit of the auto-sklearn automated machine learning tool.
described by
Date
  • 2020-01-03
Creator
status
Publisher
abstract
  • With the ever-increasing number of pre-processing and classification algorithms, manually selecting the best algorithm and their best hyper-parameter settings (i.e. the best classification workflow) is a daunting task. Automated Machine Learning (Auto-ML) methods have been recently proposed to tackle this issue. Auto-ML tools aim to automatically choose the best classification workflow for a given dataset. In this work we analyse the predictive accuracy and overfit of the state-of-the-art auto-sklearn tool, which iteratively builds a classification ensemble optimised for the user’s dataset. This work has 3 contributions. First, we measure 3 types of auto-sklearn’s overfit, involving the differences of predictive accuracies measured on different data subsets: two parts of the training set (for learning and internal validation of the model) and the hold-out test set used for final evaluation. Second, we analyse the distribution of types of classification models selected by auto-sklearn across all 17 datasets. Third, we measure correlations between predictive accuracies on different data subsets and different types of overfitting. Overall, substantial degrees of overfitting were found in several datasets, and decision tree ensembles were the most frequently selected types of models.
Is Part Of
Subject
list of authors
presented at
is topic of
is primary topic of
Faceted Search & Find service v1.17_git144 as of Jul 26 2024


Alternative Linked Data Documents: iSPARQL | ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Aug 25 2024, on Linux (x86_64-ubuntu_noble-linux-glibc2.38-64), Single-Server Edition (378 GB total memory, 45 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software