Not logged in : Login
(Sponging disallowed)

About: Improving trend reversal estimation in forex markets under a directional changes paradigm with classification algorithms     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : bibo:AcademicArticle, within Data Space : demo.openlinksw.com associated with source document(s)

AttributesValues
type
seeAlso
sameAs
http://eprints.org/ontology/hasAccepted
http://eprints.org/ontology/hasDocument
dc:hasVersion
Title
  • Improving trend reversal estimation in forex markets under a directional changes paradigm with classification algorithms
described by
Date
  • 2021-08-08
Creator
status
Publisher
abstract
  • The majority of forecasting methods use a physical time scale for studying price fluctuations of financial markets. Using physical time scales can make companies oblivious to significant activities in the market as the flow of time is discontinuous, which could translate to missed profitable opportunities or risk exposure. Directional changes (DC) has gained attention in the recent years by translating physical time series to event-based series. Under this framework, trend reversals can be predicted by using the length of events. Having this knowledge allows traders to take an action before such reversals happen and thus increase their profitability. In this paper, we investigate how classification algorithms can be incorporated in the process of predicting trend reversals to create DC-based trading strategies. The effect of the proposed trend reversal estimation is measured on 20 foreign exchange markets over a 10-month period in a total of 1000 data sets. We compare our results across 16 algorithms, both DC and non-DC based, such as technical analysis and buy-and-hold. Our findings show that the introduction of classification leads to return higher profit and statistically outperform all other trading strategies.
Is Part Of
Subject
list of authors
is topic of
is primary topic of
Faceted Search & Find service v1.17_git144 as of Jul 26 2024


Alternative Linked Data Documents: iSPARQL | ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Aug 25 2024, on Linux (x86_64-ubuntu_noble-linux-glibc2.38-64), Single-Server Edition (378 GB total memory, 53 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software