Not logged in : Login
(Sponging disallowed)

About: A survey of genetic algorithms for multi-label classification     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : bibo:AcademicArticle, within Data Space : demo.openlinksw.com associated with source document(s)

AttributesValues
type
seeAlso
sameAs
http://eprints.org/ontology/hasAccepted
http://eprints.org/ontology/hasDocument
dc:hasVersion
Title
  • A survey of genetic algorithms for multi-label classification
described by
Date
  • 2018-10-04
Creator
status
Publisher
abstract
  • In recent years, multi-label classification (MLC) has become an emerging research topic in big data analytics and machine learning. In this problem, each object of a dataset may belong to multiple class labels and the goal is to learn a classification model that can infer the correct labels of new, previously unseen, objects. This paper presents a survey of genetic algorithms (GAs) designed for MLC tasks. The study is organized in three parts. First, we propose a new taxonomy focused on GAs for MLC. In the second part, we provide an up-to-date overview of the work in this area, categorizing the approaches identified in the literature with respect to the taxonomy. In the third and last part, we discuss some new ideas for combining GAs with MLC.
Is Part Of
Subject
list of authors
presented at
is topic of
is primary topic of
Faceted Search & Find service v1.17_git144 as of Jul 26 2024


Alternative Linked Data Documents: iSPARQL | ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Aug 25 2024, on Linux (x86_64-ubuntu_noble-linux-glibc2.38-64), Single-Server Edition (378 GB total memory, 53 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software