Not logged in : Login
(Sponging disallowed)

About: Deep feature embedding and hierarchical classification for audio scene classification     Goto   Sponge   Distinct   Permalink

An Entity of Type : bibo:AcademicArticle, within Data Space : demo.openlinksw.com associated with source document(s)

AttributesValues
type
seeAlso
sameAs
Title
  • Deep feature embedding and hierarchical classification for audio scene classification
  • Deep feature embedding and hierarchical classification for audio scene classification
described by
Date
  • 2020-09-28
  • 2020-09-28
Creator
status
abstract
  • In this work, we propose an approach that features deep feature embedding learning and hierarchical classification with triplet loss function for Acoustic Scene Classification (ASC). In the one hand, a deep convolutional neural network is firstly trained to learn a feature embedding from scene audio signals. Via the trained convolutional neural network, the learned embedding embeds an input into the embedding feature space and transforms it into a high-level feature vector for representation. In the other hand, in order to exploit the structure of the scene categories, the original scene classification problem is structured into a hierarchy where similar categories are grouped into meta-categories. Then, hierarchical classification is accomplished using deep neural network classifiers associated with triplet loss function. Our experiments show that the proposed system achieves good performance on both the DCASE 2018 Task 1A and 1B datasets, resulting in accuracy gains of 15.6% and 16.6% absolute over the DCASE 2018 baseline on Task 1A and 1B, respectively.
  • In this work, we propose an approach that features deep feature embedding learning and hierarchical classification with triplet loss function for Acoustic Scene Classification (ASC). In the one hand, a deep convolutional neural network is firstly trained to learn a feature embedding from scene audio signals. Via the trained convolutional neural network, the learned embedding embeds an input into the embedding feature space and transforms it into a high-level feature vector for representation. In the other hand, in order to exploit the structure of the scene categories, the original scene classification problem is structured into a hierarchy where similar categories are grouped into meta-categories. Then, hierarchical classification is accomplished using deep neural network classifiers associated with triplet loss function. Our experiments show that the proposed system achieves good performance on both the DCASE 2018 Task 1A and 1B datasets, resulting in accuracy gains of 15.6% and 16.6% absolute over the DCASE 2018 baseline on Task 1A and 1B, respectively.
Is Part Of
Subject
list of authors
presented at
is topic of
is primary topic of
Faceted Search & Find service v1.17_git144 as of Jul 26 2024


Alternative Linked Data Documents: iSPARQL | ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Aug 25 2024, on Linux (x86_64-ubuntu_noble-linux-glibc2.38-64), Single-Server Edition (378 GB total memory, 56 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software